关于三年级上册数学说课稿范文九篇
作为一名默默奉献的教育工作者,时常会需要准备好说课稿,说课稿有助于教学取得成功、提高教学质量。快来参考说课稿是怎么写的吧!下面是小编整理的三年级上册数学说课稿9篇,仅供参考,大家一起来看看吧。
三年级上册数学说课稿 篇1一、说教材
(一)教学内容:
认识几分之一,是苏教版20xx秋季版三年级上册第87—88页例1、例2。
二、教材所处的地位和作用:
“分数的初步认识” 这一单元教材是在学生已经掌握一些整数知识的基础上进行教学的,主要是使学生初步认识分数的含义。这是学生第一次接触分数,从整数到分数是学生认识数的概念的一次质的飞跃,因为无论在意义上,还是在读、写方法,它们都有很大的差异。分数概念比较抽象,学生接受起来比较困难,不容易一次学好,所以,现行的小学数学教材,分数的教学分两次进行。第一次是分数的初步认识,第二次才是系统的学习分数知识。本单元只是初步认识。认识“几分之一”又是认识几分之几的第一阶段,是单元的“核心”,是整个单元的起始课,对学生的后续学习起着至关重要的作用,对学生以后学习分数、小数等知识以及分数应用题是十分重要的。
(三)教学目标:
1.知识教学点:初步认识分数,理解几分之一的含义,会读写几分之一。
2.能力发展点:亲历合作交流,自主探究的过程。培养学生的观察能力、语言表达能力和迁移类推的能力。
3.情感渗透点:在动手实践、合作交流的过程中,激发学生探求知识的兴趣及自主学习的精神。体会数学与现实生活的紧密联系。
4.创新开发点:通过折二分之一、四分之一,创造几分之一的过程,培养学生的创新意识和创新的思维品质。
三、说教法
1.转变角色 放手促学
现代教育理论告诉我们:“学生存在着主体性的巨大潜能,他们完全有能力
在一定程度上做自己行为的主人”。因此,作为教学活动的组织者、引导者、合作者,我努力创设平等、宽松和谐的学习氛围,让学生通过小组合作、自主探究、生生交流,亲力探究新知的全过程。体会到探究的快乐,成功的欣喜,合作的愉悦。
2.联系生活 引探创新
“数学知识来源于生活,生活本身就是巨大的数学课堂”。因此,本节课我紧密联系学生的生活实际,让学生结合自己的生活经验认识几分之一,体会到生活中处处有数学。并鼓励学生创造出几分之一,激发学生的创新精神。
3.创设情境 升华认识
小学生思维活跃,但只有在宽松、愉快的环境中,他们的聪明智慧才能充分施展发挥,他们的真情实感才能毫无忌讳的流露。针对这一点,我以学生喜欢的野餐为主线,创设教学情境,唤起学生的情感体验,大大有利于学生对所学内容进行积极地意义建构。
四、说学法
1.自主学习策略
在本课教学中,我坚持以学生为主,把课堂还给学生,让学生自由选择材料表示它的二分之一,自己创造正方形纸的四分之一和几分之一,通过折一折、涂一涂、说一说等实践活动,自主探究,突破本课的重难点。
2.合作学习策略
建构主义特别提倡合作学习,认为“合作”是建构主义学习过程中不可缺少的要素之一。因此,在通过折纸探究几分之一的含义时,我鼓励学生充分地合作交流,在交流的过程中,取长补短,增长见识,真正实现“1+1〉2”。与此同时,学生的表达能力,观察能力,比较能力,辨析能力,倾听的习惯等,都得到了很好的发展。合作意识不断增强,为今后的发展奠定了基础。
五、说教学过程
(一)创设情境、铺垫孕伏
通过创设野餐的教学情境,让学生在分食物的过程中,体会怎样分才能使两位同学美誉意见,这边学生会讲到每人分“两个”这样就比较公平,公平的分我们也叫做“平均分”,为本节课认识几分之一奠定了一个基础。
(二)自主探究、合作共研
就本节课而言,感悟分数的含义和理解“是谁的”的含义是教学的重点、难点所在。为此,我设计了有梯度的三层探究活动。
1.认识二分之一
当结合学生的叙述和课件演示,使学生明确:把一块蛋糕平均分成两份,每 份是这块蛋糕的一半后,激疑:半个蛋糕用我们学过的1、2、3这样的整数还能表示吗?引出二分之一这个分数,同时教学二分之一的读写法。并引导学生理解:把一个蛋糕平均分成两份,每份是它的二分十一。让学生借助生活经验,初步理解二分之一的含义。紧接着,教师让学生分小组任选一个图形材料折出它的二分之一。这样,学生通过动手操作、组内交流,进一步深化对二分之一的理解。也为后面对四分之一的理解做好了应有的知识准备。
2.认识四分之一
由于有对二分之一的理解作为基础,在对四分之一教学的处理时,我主要采用迁移的策略,放手让学生自己探索出:把一张正方形纸平均分成两份和四份,每份是它的二分之一和四分之一。并鼓励学生创造出多种方法折出一张正方形纸的二分之一和四分之一 。同时,引导学生思考:为什么折法不同却都能表示这张正方形纸的二分之一和四分之一 ?使学生认识到:不论一个图形形状如何,只要是把它平均分,其中的一份就是它的几分之一。
3.比较几分之一的大小
回到分食物的情境中,通过刚才的学习,让学再说说把一个月饼平均分成两份、四份、八份,每份是它几分之几,通过分同一个物体比较每份的大小,我们可以得到:当物体相同时,分的分数越多,每一份就越小。找到规律后紧接着进行练习,加深认识。
(三)应用辨析 深化认识
通过寻找身边的分数和帮助张大伯解决问题,让学生感受到数学来源于我们的生活运用于生活,进而激发学生的学习兴趣。
(四)归纳总结 拓展延伸
课的最后,让学生自己谈感受和收获,引导学生自觉对本节课的知识进行梳理,并利用课外拓展题,再次激发学生的探究欲望,培养学生的抽象思维能力,进一步加深对分数的理解。
三年级上册数学说课稿 篇2教材内容:
人教版课标实验教材三年级上册第104—105页,学习时间在12月中旬。
教材分析:
在现实世界中,有些事件的结果在一定的条件下可以预知,即确定现象;有些事件的结果在一定的条件下无法事先预知,即随机现象(不确定现象)。为了帮助学生认识现实生活中的确定现象和随机现象,《课程标准》第一学段新增了属于概率知识范畴的内容《可能性》。旨在引导学生观察分析生活中的现象,初步体验现实世界中存在着不确定现象,认识事件发生的确定性和不确定性。教材选取了“新年联欢会上抽签表演节目”的现实情境,引入本单元的学习内容。通过主题图及例1、例2的教学,使学生初步体验在现实世界中有些事件的发生是确定的,有些则是不确定的。
……此处隐藏10503个字……结合情境,发展应用数学的意识和能力。过程与方法——①通过分一分等活动,亲历两位数除以一位数算理的探索发现过程;
②将具体的实践操作和抽象的算式结合起来,理解算理,初步建立解决问题的数学模型。
情感态度与价值观——学生通过观察、操作、推理等活动发展合作交流的能力。
教学重点是探索掌握用竖式计算两位数除以一位数(商是两位数);难点是理解算理,正确规范地书写竖式。
四、读懂课堂
总的来说,关键在“算理”,这是计算教学的本质,也是大家都众所周知的。
但却总是在实践中很迷茫,很困惑。
在我自己试讲这节课前,先听其它老师讲了一节,她的整个课堂是这样的:“复习口算——出示情境图——引导学生呈现数学问题——列出算式——学生思考计算方法——展示计算方法——教师讲解算理——学生练习计算并演板——再次讲解算理——再次练习反馈”。
我注意到学生们都准备了小棒,看来老师是有意识让学生动手实践的,但整节课中小棒形同虚设,学生根本没有碰一下。在课后研讨的时候,该教师的解释是由于一名学生出现的错误算法超出了自己的预设,所以打乱了自己的教学思路,结果教学效果大打折扣。这样一节较为失败的课让我对自己来讲这节课有了更大的心理负担,眼见为实,原来算理这么难讲啊。
之后就是我自己的第一次试讲,我很重视学生动手实践,旨在让他们在实践的过程中理解算理,但课上起来也并不顺利,操作浪费了很多时间,在练习时发现有学生不理解算理,教师便开始“走回头路”,结果整节课结束教学内容只进行了60%多,这让我很是郁闷,曾一度想放弃“分小棒”的环节。有这样的想法是因为听了师兄的这节课,他的课堂就没有让学生“分小棒”,而是利用口算的“算理”来迁移讲解了笔算的“算理”,这样的计算教学节省了时间,学生似乎也理解了。还有一位师姐是这样讲的,她在学生动手“分小棒”之后,并没有让学生汇报展示,而是用电脑操作演示了“分小棒”的过程,然后让学生列竖式。和我的不太一样,我是在学生动手“分小棒”之后请了一名学生到前面演示分的过程,让下面的学生说过程,同时教师板演竖式的呈现过程。我这样的方法给人的感觉就是比较乱。课后研讨时我们总结了3种帮助学生理解算理的方法:①师兄的方法——结合口算;②师姐的方法——先分再列竖式;③我的方法——动手实践、语言描述、抽象竖式三者相结合。从大家的反应来看,我的方法似乎支持者甚少,但是没有做课堂后测,我无法看到到底哪种方法对学生的理解最有帮助,但是在我的内心还是倾向于自己“三结合”的方法。
之后我又进行了一次校内的试讲,虽然很不情愿,但还是学习了师姐的方法,也就是先分再列竖式,因为这样课堂看起来不乱,但课后研讨时同事们的批评之词铺天盖地。为此我翻阅了人教版的相关教学内容,也是借助“分小棒”来帮助学生理解算理,而且每一步都呈现的很清楚,这让我对自己的方法又有了信心。恰好中心组又组织了两位师姐再来讲这节课,她们俩的方法正好一个是“借助口算”,一个是“先分再计算”。课后我们进行了后测,结果是触目惊心的,完全正确率还不到30%,这让我们陷入了深思:究竟什么是“算理”,怎么这么难讲?
通过研讨和寻找理论帮助,我知道:掌握算法和探究算理是计算教学的两大任务,算法是解决问题的操作程序,算理是算法赖于成立的数学原理。算理的缺失,难以支撑算法的牢固。《课标》在计算教学上提出了“计算教学时,应通过解决问题进一步培养学生的数感,增进理解算法的理解。”由此可见,计算教学只有在感悟算理的基础上掌握算法,才能形成真正的计算技能,不明白算理的算法是机械的算法,对计算技能的形成是不牢固的、脆弱的。
因此在我的第三次试讲中,我大胆的在多媒体技术的支撑下又一次尝试了“分、说、写”三合一的方法,效果显示学生对算理的理解是有所进步的。但又出现了新的问题:算法要总结吗?大家的意见不太统一。又要再次寻求帮助:轻算理重算法会使教学失去计算所赋予的教学功能,重算理轻算法又无法达成扎实的计算技能。《课标》将课程目标分成了知识技能目标与过程性目标两大类,如果片面理解课程目标,那必定是在两个误区间来回走动。因此,算理与算法两者不可偏颇。
有位心理学家曾说过:初次感知知识时,进入大脑的信息可以不受干扰,能在学生的大脑皮层留下深刻的印象。如果首次感知不准确,那么造成的不良后果在短期内是难以清除的。在计算教学时,只有让学生清晰地理解计算的算理,揭示不同知识背景下的本质联系(算理就是计算教学的本质联系),才能真正掌握计算的算法。因此,不可偏颇,但要先算理后算法。
有了这样的理论引领,我的第四次、第五次试讲,以及最后的现场比赛,就越来越得心应手,虽然还不够完美,但是我目前为止所行走的最远的地方。
五、反思升华
回想和学生一起研究算理的过程,我深感:计算教学,特别是算理的理解,需要学生的切身体验。因为算理本身所具有的抽象性、逻辑性导致计算教学的枯燥与乏味,学生学起来枯燥必将引发学生失去可持续学习发展的张力。这就要求计算教学须结合学生的实际,构建有利于揭示理解算理的途径,帮助学生在愉悦的环境中经历计算过程、体验算理、感悟算法。
1、在语言描述中体验算理
“数学是思维的体操”,“语言是思维的外壳”。在具体的问题解决过程中理解抽象的算理,确实具有一定的难度。不妨让学生对解决问题的具体过程用数学语言综合描述,把具体的感知通过语言的加工描述最后概括形成算法。这个抽象描述的过程就是学生体验算理的过程,从而达到感悟算法。
2、在动手操作中体验算理
数学的抽象性和学生以具体形象思维为主的认知水平之间存在着一定的矛盾,动手操作是解决这一矛盾的重要手段,可以使学生在较短的时间内理解较抽象的数学概念。在计算教学中,可根据教师创设的问题情境与提供的定向指导,通过动手操作活动来探究数学问题的内在联系、理解算理。现代教学论的认为,数学教学不仅要使学生掌握数学知识的结论,还要让学生了解知识的发生过程。新课标虽对计算教学的要求和训练强度相对降低,但重视学生的数感发展,计算教学时须注重学生的动手操作,以动促思,自主体验算理、理解算法。
“儿童的智慧在他手指尖上” (苏霍姆林基语)阐明了操作是智力的起源,是思维的起点。“磨刀不误砍柴工”,教师不能怕操作费时,只有让学生 “做数学”,动手摆一摆、拼一拼,量一量,在做一做、看一看、想一想的活动中,亲身体验,才能理解新知识,提高数学能力。动手操作可以帮助学生把抽象的数学思维外显为直观的活动,同时在活动中体验、感悟、发现,最终达到真正的理解和掌握,是帮助学生探索算法,抽象算法的重要手段。
“智慧自动作发端”(皮亚杰),动手操作是最易于激发学生的思维和想象的一种活动,在这一过程中,把学生的外部操作与内部的数学思维紧密结合起来,加深了学生对所学知识的理解。教师所要做的只有一件事:站在学生的角度,安排操作的最佳时机。
这就是我的计算教学之路,基于自己的实践、思考、学习、反思的过程,在过程中成长进步,我永远不会停下脚步。
文档为doc格式