《分数的基本性质》说课稿

时间:2024-07-27 22:05:05
《分数的基本性质》说课稿

《分数的基本性质》说课稿

作为一名教师,时常需要编写说课稿,借助说课稿可以更好地组织教学活动。写说课稿需要注意哪些格式呢?以下是小编精心整理的《分数的基本性质》说课稿,欢迎大家分享。

《分数的基本性质》说课稿1

各位老师,同学:

大家上午好!

我说课的内容是:人教版小学数学课标教材五年级下册75页—76页《分数基本性质》。下面我就从教材分析、学情分析、教学目标、教法学法及教学过程五个方面来谈一下教学过程设计及设计意图。

一、 教材分析

本节的内容属于概念教学。《分数基本性质》在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础,还是约分、通分的依据。

二、 学情分析

学生已经清楚理解分数的意义,明确分数与除法的关系,商不变性质等知识,这些都为本节课学习做了知识上的铺垫。分数的基本性质是一种规律性知识,分数的分子、分母变了,分数的大小却没变。学生在这种“变”与“不变”中发现规律,掌握新知识。

三、 教学目标

综合分析课程标准要求及学生实际,我确定本节教学目标如下:

1.理解和掌握分数的基本性质,并会运用分数的基本性质把不同的分数化成分母(或分子)相同而大小不变的分数。

2.初步养成观察、比较、抽象概括的逻辑思维能力,并且在自主探究中正确认识和理解变与不变的辩证关系。

3.受到数学思想的熏陶,养成乐于探究的学习态度。

教学重点:理解掌握分数的基本性质,它是约分、通分的依据。

教学难点:让学生自主探索、发现和归纳分数的基本性质,以及应用它解决相关的问题。

四、 教法学法

根据本节课的教学目标,考虑到学生已有的知识、生活经验和认知特点,结合了教材内容,本一课我主要采用猜想验证与探索发现的教学模式。在分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析。通过了观察、比较,提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用,激发学生学习兴趣,同时让学生获得成功体验。

五、 教学过程

本一节课的教学过程我分五个部分进行

第一部分:故事设疑,揭示课题。以唐僧师徒分饼的故事创设问

题情境,揭示本节课要研究的问题。

第二部分:组织讨论,动手操作。主要是组织学生动手进行折、画、标等活动,初步理解分数基本性质。

第三部分:合作探究,发现规律。主要的是学生找出规律,并利用规律解决问题。

第四部分:多层练习,巩固深化。主要是巩固所学知识并进行拓展提高。

第五部分:梳理知识,反思小结。主要是总结全课。

其中,第三部分“合作探究,发现规律”可以细化成为三个环节:

环节一:动手操作,进行比较

这一环节是在第二部分的基础上进行的,我给每组学生三张大小一样的长条纸,让学生用分数表示涂色部分,并比较大小。此环节的设计主要是培养学生的比较能力。

环节二:呈现问题,引导观察

这一环节主要是呈现给学生这样的一个问题,“第一环节中的分数的分子、分母都不一样,为什么大小相等”,引导学生从左到右、从右到左两方面去观察,此环节的设计主要是培养学生的观察能力。

环节三:交流汇报,得出规律

这一环节主要是学生汇报交流,得出结论。

如果学生没有概括出“0除外”就设计两组练习,分子、分母同乘或除以0,完善结论;如果概括出来了,再追加一个问题“为什么强调0除外”,巩固结论。最终推导出分数的基本性质----分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。此环节的设计主要是培养学生的抽象概括能力。

应该强调的是,无论学生说的多么好,教师最后的总结和确认是不可缺少的。

以上是我对《分数基本性质》一节的教学设计意图,有不当之处,请各位批评指导。

《分数的基本性质》说课稿2

一、说教材

《分数的基本性质》是九年义务教育六年制小学数学第十册第五单元的一个重要内容。该教学内容是以分数的意义、分数与除法的关系以及整数除法中商不变的规律这些知识为基础的。原教材先通过直观使学生了解1/2、2/4、3/6 4/8四个分数的分子、分母虽然不同,但是分数的大小是相等的。接着进一步研究这四个分数的分子和分母,思考它们是按照什么规律变化的。最后归纳出分数的基本性质。这样安排教学内容,学生的主体地位不能得到充分体现,不利于培养学生的问题意识。为此,我打算通过"折、画、想、问、用"五个环节对教学内容作如下处理。

1.画--让学生用色笔在长方形纸条上分别涂出它们的一半,并用分数来表示。

2.想--1/2、2/4、3/6 、4/8这些分数有什么关系?你还能说出和"1/2"大小相等的其他分数吧?你还能说出和"2/3"大小相等的分数吧?

3.问—从"1/2=2/4=3/6=4/8"中,你发现了什么?

4.用--用已学过的"分数的基本性质"解决有关的数学问题。这样安排教学有以下几点好处:

(1)有利于知识的迁移。

让学生通过动手折、涂,再用分数表示,这样既帮助学生复习了分数的意义,又为学习新知识作了准备。

(2)能发挥学生学习的主动性。

通过学生找和"1/2"大小相等的分数,以及和"2/3"大小相等的分数,发挥学生学习的主动性,体现自主学习的精神。

(3)提高了学生的学习能力。

通过交流,培养学生敢于发表自己的意见,积极思考问题,积极探究问题,培养学生概括问题的能力和解决问题的能力。

二、说教学目标

以上各个教学环节的设计体现如下几点教学目标:

1.知识技能性目标:让学生亲身经历"分数基本性质"抽象概括的全过程,正确理解和掌握分数的基本性质,使学生能运用分数的基本性质解决有关的数学问题。

2.发展性目标:培养学生观察--探索--抽象--概括的能力以及迁移类推能力,渗透事物是相互联系、发展变化的辩证唯物主义观点,培养学生的数学意识、问题意识、合作意识以及应用意识。

3.创新性目标:让学生在学习的过程中发现问题、解决问题,提高学生探索问题的能力和研究问题的能力。

三、说教法

本节课起打算采用"创设情境,复习迁移--设疑激思,获取新知--深化概念,及时反馈"的教学模式进行教学。

1.创设情境,复习迁移。

为了发挥学生 ……此处隐藏22887个字……活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,以及学生的认知规律,我采用的教学方法主要有:

1、实际操作法

指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。

2、直观演示法

先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。

3、启发式教学法

运用知识迁移规律组织教学,用数学学数学,层层深入,促使学生在积极的思维中获取新知。

四、说学法

1、学生在学习分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在纸条上涂出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那三个分数大小相等,在尝试中发现,在实践中体验,从而加深学生对分数基本性质的理解。

2、在学习例题的过程中教师先采用启发法,再采用学生自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成练习题,达到检验自学的目的。

五、说教学过程

1、复习提问,旧知铺垫

新课开始,我先板书了一个除法算式 1÷2,然后让学生不计算,说出一个除法算式和它的商相等,学生边说我边抽取两个算式板书,比如2÷4,4÷8 ,3÷ 6等。然后让学生说说是根据什么想到这些算式的(商不变的规律),商不变的规律的内容又是什么。

第二步,我让学生根据分数与除法的关系,把这三个算式写成分数形式,根据三个算式商相等,推导出这三个分数的大小。也就是1/2=2/4=4/8。此时,引导学生:在除法中有商不变的性质,那么分数中又有什么规律呢?今天我们就共同来探讨分数当中的这个问题。这样设计的目的就是让学生通过观察算式和分数的特点,培养学生直觉观察能力,激发学生利用旧知识商不变的规律,探求新知识的兴趣,同时也使学生明确要解决的问题。

2、动手操作,初步感知

首先让学生用三张同样大小的长方形纸条折一折,再涂色表示出每张纸的1/2,2/4,4/8。再观察涂色部分,说说发现了什么?在学生汇报时,说出发现:涂色部分面积相等,也就说明这三个分数大小相等。然后通过电脑再进一步证实学生的发现:把一张纸条平均分成2份,涂其中1份,得到1/2;把一张纸条平均分成4份,涂其中2份,得到2/4;把一张纸条平均分成8份,涂其中4份,得到4/8;通过观察,我们发现三个阴影部分大小相等,说明三个分数大小相等。这一过程的设置,主要是利用学生爱动手以及直观思维的特点,让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好迁移,而且激活了课堂气氛,营造了良好的学习开端。

3、设疑促思,探究新知

“疑是思之始,学之端”。在教师板书1/2=2/4=4/8后,进一步引导学生观察这三个分数,它们的分子分母都不相同,但是分数的大小却相等,提出疑问:这里面隐藏着什么秘密,有什么规律?接着将发言权充分交给学生,完全开放空间,激发学生思索,并畅所欲言,说出自己发现的规律,(比如:将1/2的分子分母同时乘2得到2/4,将2/4的分子分母同时乘2得到4/8,将1/2的分子分母同时乘4得到4/8;将4/8的分子分母同时除以2得到2/4,将2/4的分子分母同时除以2得到1/2,将4/8的分子分母同时除以4得到1/2共6种)。

在学生自主探究的基础上,逐步完善学生的说法,适时引导学生将发现的规律总结成一句话:分数的分子分母同时乘或者除以相同的数,分数的大小不变。

如果学生在此说出了0除外更好,如果没有,在此基础上,提出疑问:“同时”表示什么意思?这个相同的数是任何数都行吗?为什么?那么同学们总结的规律该怎样叙述更完整呢?在学生加上“0除外”完整叙述后,指出:分数的这种变化规律就是我们今天学习的“分数的基本性质”,并借此板书课题“分数的基本性质”。

这样设计的目的就是培养学生发现问题,自主探究问题的能力,也培养学生的语言表达能力,抽象概括能力和初步的逻辑思维能力。

另外,我还安排了“听一听”,让学生听5句话并判断对错。

第一句:分数的分子分母同时乘相同的数(0除外),分数的大小不变。

第二句:分数的分子分母同时除以相同的数(0除外),分数的大小不变。

第三句:分数的分子分母同时加上相同的数(0除外),分数的大小不变。

第四句:分数的分子分母同时减去相同的数(0除外),分数的大小不变。

第五句:分数的分子分母同时乘或者除以相同的数(0除外),分数的大小不变。

除了进行“听一听”的练习,还有习题的判断。这样一次次地加深,强化学生对分数的基本性质的理解,反复锤炼学生,达到对知识的更深刻的掌握,也为后面例题的完成奠定厚实的基础。

4、初步应用,深化新知

学习分数的基本性质,就是为了在生活中运用它。给你一个分数,能把它化成分母不同而大小相同的分数吗?借此引出例2。让学生读题,并明白做题要求有两个:一是分数大小不变,二是分母相同。在引导学生完成第一个分数后,第二个分数让学生独立完成在书上,然后全班学生交流自己的过程及结果。但是一个例2不足以让学生达到巩固的目的,所以再次安排了和例2题型完全一样的“做一做”,让学生独立思考,写在练习本上,并抽两名学生板演,对出现的问题共同指正。这样的安排是为了把“分数的基本性质”及时练习,反复应用,对学生巩固新知、利用新知都达到好的效果。

5、多样练习,巩固知识

在初步应用“分数的基本性质”后,我安排了四个不同层次的习题。其中“填一填”是基础练习,但也包含有6/12=( )/( )的发散题。“判一判”也是对“分数的基本性质”做进一步的诠释。“说一说”是一种变换了形式的习题,难度不大,只不过说法不同,最后还安排了“想一想”环节,解决的方法已经蕴含在前面的“听一听”环节中。整个习题设计部分,题目呈现方式的多样,吸引了学生的注意力,激发了学生兴趣。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。

6 、全课小结,整理知识

让学生回顾本节课,说一说自己的收获,培养学生的知识概括能力。同时,教师也在此时进行总结:分数的基本性质和商不变的性质只是在说法上不同,在实质上是相同的,所谓“万变不离其宗”正是如此。通过利用“分数的基本性质”填空,写出许许多多分子分母不同但分数大小相等的分数,体会“以不变应万变”的数学学习方法。最后告诉学生一个小秘密,以后还将学习比的基本性质,它是在“分数的基本性质”的基础上学习的,这也是“用数学学数学”的学习方法。这样安排会更加激发学生学习数学的兴趣,以及探究数学问题的方法。

最后,我想说,学习无止境,在今后的教学中,我会更加努力地钻研教材、设计教法,力争使每一节数学课都能达到理想的教学效果。

《《分数的基本性质》说课稿.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式